stochastic variable - traducción al ruso
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

stochastic variable - traducción al ruso

VARIABLE REPRESENTING A RANDOM PHENOMENON
RandomVariable; Random variables; Random variation; Discrete random variable; Stochastic variable; Aleatory variable; Statistical variable; Random Variable; Discrete Random Variable; Equal in distribution; Random quantity
  •  If the sample space is the set of possible numbers rolled on two dice, and the random variable of interest is the sum ''S'' of the numbers on the two dice, then ''S'' is a discrete random variable whose distribution is described by the [[probability mass function]] plotted as the height of picture columns here.
  • This graph shows how random variable is a function from all possible outcomes to real values. It also shows how random variable is used for defining probability mass functions.

stochastic variable         

общая лексика

случайная величина

stochastic variable         
случайная переменная
stochastic variable         
случайная величина

Definición

Бесступенчатая передача

механизм для плавного изменения передаточного числа, т. е. отношения частоты вращения ведущего звена к частоте вращения ведомого. Применяется в транспортных машинах, станках, приборах и т.д. Бесступенчатое регулирование скорости по сравнению со ступенчатым повышает производительность машин, облегчает автоматизацию и даёт возможность управления на ходу. Б. п. - часть Вариатора, который состоит из одной или нескольких Б. п. и устройств, обеспечивающих их функционирование. Различают Б. п. электрические и механические.

В зависимости от вида передающих звеньев механические Б. п. бывают с жидким рабочим звеном (гидравлические), с гибким (ремённые и цепные) и с жёстким звеньями. По характеру работы Б. п. с гибким и жёстким звеньями делятся на фрикционные (трения) и зацепления, непрерывного действия и импульсные. Термин "Б. п." обычно применяют к механическим передачам с гибким и жёстким звеньями.

Электрические Б. п., выполняемые по системе генератор - двигатель, применяют в транспортных машинах и для др. целей при передаче значительных мощностей (см. Электропривод).

Гидравлические Б. п. бывают гидростатические (или объёмного действия) и гидродинамические (см. Гидропередача объёмная, Гидродинамическая передача). Для уменьшения частоты вращения при постоянном вращающем моменте и сравнительно низком кпд служат муфты скольжения - гидродинамические и др.

Фрикционные Б. п. с гибким звеном и раздвижными коническими шкивами (рис. 1) обеспечивают малое изменение передаточного числа при изменении нагрузки, отличаются высокой надёжностью, но имеют большие габариты. В Б. п. с гибким звеном (клиновым ремнем или специальной роликовой цепью) передаточное число изменяется: принудительным согласованным сближением одной пары конусов и раздвижением другой при помощи механизма управления (рис. 1, а); осевым перемещением одной пары конусов принудительно, а другой под действием пружины (рис. 1, б); изменением межосевого расстояния (А) при одном подпружиненном и другом закрепленном шкиве (рис. 1, в).

Б. п. зацепления с гибким звеном отличаются высокими эксплуатационными качествами, но сложны в изготовлении. Основные элементы этой передачи: раздвижные зубчатые конусы и пластинчатая цепь. Звенья цепи имеют поперечные окна, в которые вставлены пакеты тонких пластин (рис. 2). Против выступов на одном конусе располагаются впадины другого так, что при перемещении в осевом направлении пластины принимают форму зубьев, осуществляя зацепление.

Фрикционные Б. п. с жёстким звеном компактны и имеют обычно жёсткую механическую характеристику, но требуют значительных сил для прижатия рабочих тел и создания необходимого трения между ними; имеют пониженную надёжность в эксплуатации из-за возможности пробуксовки и повреждения рабочих поверхностей. Кпд и долговечность этих Б. п. в значительной степени зависят от геометрического скольжения, возникающего в результате неравенства скоростей ведущего и ведомого звеньев на линии контакта. Чем больше относительная скорость скольжения Vck на линии контакта, тем ниже кпд Б. п. и больше износ трущихся поверхностей.

На рис. 3 показаны схемы некоторых Б. п., расположенных в порядке уменьшения геометрического скольжения. Многодисковые Б. п. (рис. 3, а), несмотря на невыгодную схему геометрического скольжения, широко применяются для средних и больших мощностей (до сотен квт) из-за благоприятных условий образования масляного клина в местах контакта и наличия большого числа узких контактных поверхностей. В лобовой Б. п. (рис. 3, б) с коническим роликом при совпадении вершины конуса А с точкой А, геометрическое скольжение отсутствует, а в др. положениях оно существенно меньше, чем у Б. п. с цилиндрическим роликом (рис. 3, в). В схеме торовой Б. п. (рис. 3, г) очень малое геометрическое скольжение во всех положениях роликов и практически отсутствует в положениях, когда вершина А конической поверхности, условно заменяющей сферическую поверхность ролика, находится в точках А1 и А2, на геометрической оси чашек. Б. п. этого типа выполняются с 2 и 3 роликами, отличаются высоким кпд и компактностью. Недостатком их являются сложность изготовления, ремонта и пониженная надёжность. Б. п. с точечным контактом имеет промежуточные стальные шары (рис. 4), положение физических или геометрических осей которых изменяется механизмом управления.

В импульсных Б. п. вращательное движение ведущего вала преобразуется в качательное (колебательное) или в неравномерное вращательное движение промежуточных звеньев, от которых через механизмы свободного хода движение передаётся ведомому валу. Передаточное число устанавливается механизмом управления, изменяющим амплитуду колебаний или скорость промежуточных звеньев. Неравномерность скорости ведомого звена частично сглаживается его инерцией.

Лит.: Детали машин. Справочник, 3 изд., т. 3, М., 1969; Краткий справочник машиностроителя, М., 1966.

Н. Я. Ниберг.

Рис. 1. Фрикционная бесступенчатая передача с гибким звеном и раздвижными шкивами: 1 - гибкое звено; 2 - управляемый шкив; 3 - подпружиненный шкив; 4 - постоянный шкив; 5 - цапфы.

Рис. 2. Бесступенчатая передача зацепления: 1 - пластинчатая цепь; 2 - пластины; 3 - зубчатые конусы.

Рис. 3. Фрикционная бесступенчатая передача с жёсткими звеньями (скорость геометрич. скольжения показана при наибольшей нагрузке): а - многодисковая (установка передаточного числа производится изменением межосевого расстояния А); б - лобовая с коническим роликом; в - лобовая с цилиндрическим роликом; г - торовая.

Рис. 4. Бесступенчатая передача с промежуточными шарами: а - с изменением наклона физической оси вращения шаров; б - с изменением наклона геометрической оси шаров (механизмы управления не показаны).

Wikipedia

Random variable

A random variable (also called random quantity, aleatory variable, or stochastic variable) is a mathematical formalization of a quantity or object which depends on random events. The term 'random variable' can be misleading as it is not actually random or a variable, but rather it is a mapping or a function from possible outcomes (e.g., the possible upper sides of a flipped coin such as heads H {\displaystyle H} and tails T {\displaystyle T} ) in a sample space (e.g., the set { H , T } {\displaystyle \{H,T\}} ) to a measurable space (e.g., { 1 , 1 } {\displaystyle \{-1,1\}} in which 1 corresponding to H {\displaystyle H} and −1 corresponding to T {\displaystyle T} ), often to the real numbers.

Informally, randomness typically represents some fundamental element of chance, such as in the roll of a dice; it may also represent uncertainty, such as measurement error. However, the interpretation of probability is philosophically complicated, and even in specific cases is not always straightforward. The purely mathematical analysis of random variables is independent of such interpretational difficulties, and can be based upon a rigorous axiomatic setup.

In the formal mathematical language of measure theory, a random variable is defined as a measurable function from a probability measure space (called the sample space) to a measurable space. This allows consideration of the pushforward measure, which is called the distribution of the random variable; the distribution is thus a probability measure on the set of all possible values of the random variable. It is possible for two random variables to have identical distributions but to differ in significant ways; for instance, they may be independent.

It is common to consider the special cases of discrete random variables and absolutely continuous random variables, corresponding to whether a random variable is valued in a discrete set (such as a finite set) or in an interval of real numbers. There are other important possibilities, especially in the theory of stochastic processes, wherein it is natural to consider random sequences or random functions. Sometimes a random variable is taken to be automatically valued in the real numbers, with more general random quantities instead being called random elements.

According to George Mackey, Pafnuty Chebyshev was the first person "to think systematically in terms of random variables".

¿Cómo se dice stochastic variable en Ruso? Traducción de &#39stochastic variable&#39 al Ruso